The Pyrethroid Knockdown Resistance

نویسندگان

  • Ademir Jesus Martins
  • Denise Valle
  • Oswaldo Cruz
چکیده

New promising insect control efforts are now being evaluated such as biological alternatives or even transgenic insects and Wolbachia based strategies. Although it is increasingly clear that successful approaches must involve integrated actions, chemical insecticides unfortunately still play a central role in pest and vector control (Raghavendra et al., 2011). Development of new safe and effective compounds in conjunction with preservation of those currently being utilized are important measures to insure insecticide availability and efficiency for arthropod control. In this sense, understanding the interaction of insecticides with the insect organism (at physiological and molecular levels), the selected resistance mechanisms and their dynamics in and among natural populations is obligatory. Pyrethroids are synthetic compounds derived from pyrethrum, present in Chrysanthemum flowers. Currently, pyrethroids are the most used insecticides against arthropod plagues in agriculture and livestock as well as in the control of vectors of veterinary and human health importance. They are chemically distinguished as type I (such as permethrin, compounds that lack an alpha-ciano group) and type II (with an alpha-ciano group, like deltamethrin) (T. G. Davies et al., 2007b). Pyrethroid insecticides have been largely adopted against vector mosquitoes through indoor, perifocal or ultra-low volume (ULV) applications. As of yet pyrethroids are the only class of insecticides approved for insecticide treated nets (ITNs), an important tool under expansion against malaria, mainly in the African continent (Ranson et al., 2011). The consequence of intense and uncontrolled pyrethroid use is the extremely rapid selection of resistant populations throughout the world. Just like DDT, pyrethroids act very fast in the central nervous system of the insects, leading to convulsions, paralysis and eventually death, an effect known as knockdown. However, unlike DDT, pyrethroids are not claimed to cause severe risks to the environment or to animal or human health, hence its widespread use. The main pyrethroid resistance mechanism (the knockdown resistance phenotype, kdr) occurs due to a point mutation in the voltage gated sodium channel in the central nervous system, the target of pyrethroids and DDT. Herein we aim to discuss the main mechanism of pyrethroid resistance, the knockdown resistance (kdr) mutation, its effect and its particularities among arthropods. The most common methods presently employed to detect the kdr mutation are also discussed. Some aspects regarding the other main pyrethroid resistance mechanisms, like alterations in behaviour, cuticle and detoxifying enzymes will be only briefly addressed. The proposal of this chapter is to review knockdown resistance to pyrethroids, nowadays the preferred insecticide class worldwide. This topic discusses aspects of general biology, physiology,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of a non-pyrethroid insecticide and a repellent: a new approach for controlling knockdown-resistant mosquitoes.

Although pyrethroid-treated materials are a promising tool for the prevention and the control of dengue in the tropics, the development of pyrethroid resistance in the main mosquito vector (Aedes aegypti) may negate their use for personal and/or community protection. In that context, the efficacy of a mixture of a repellent (N,N-diethyl toluamide [DEET]) and a non-pyrethroid insecticide (propox...

متن کامل

مقاومت سوسری آلمانی به پرمترین در بیمارستان آموزشی درمانی شهید بهشتی زنجان

Background & Objectives: Blatella germanica as a significant urban pest, can transmit various diseases and cause allergy. In spite of frequent pyrethroid spraying, contamination to German cockroach continues in Shahid Beheshti hospital and so far no survey has been carried out concerning the cause of persistent contamination to this pest. This study was carried out to assess the susceptibility ...

متن کامل

Monitoring Pyrethroid Insecticide Resistance in Major Malaria Vector Anopheles culicifacies: Comparison of Molecular Tools and Conventional Susceptibility Test

<Anopheles culicifacies is a main malaria vector in southeastern part of Iran, bordring Afghanistan and Pakistan. So far, resistance to DDT, dieldrin, malathion and partial tolerance to pyrethroids has been reported in An. stephensi, but nothing confirmed on resistance status of An. culicifacies in Iran. Methods: In current study, along with WHO routine susceptibility test with DDT (4%), di...

متن کامل

Pyrethroid resistance and its inheritance in a field population of Hippodamia convergens (Guérin-Méneville) (Coleoptera: Coccinellidae)

The convergent lady beetle (CLB), Hippodamia convergens (Guérin-Méneville), a species widely distributed and used in biological control, has exhibited high survival under field and laboratory conditions when treated with field rates of the pyrethroid k-cyhalothrin, a highly unusual phenomenon for a natural enemy. This work investigated and characterized the phenomenon of pyrethroid resistance i...

متن کامل

PCR-based assay to survey for knockdown resistance to pyrethroid acaricides in human scabies mites (Sarcoptes scabiei var hominis).

Permethrin, in the form of a topical cream, is being increasingly used for community-based programs to control endemic scabies. The development of resistance has reduced the use of pyrethroids for the control of many arthropods of economic and health importance. The best recognized form of pyrethroid resistance, known as knockdown resistance or kdr, has been linked to specific mutations in the ...

متن کامل

The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis

Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control. Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis pop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012